Additive Fertigung für hochfeste Leichtmetall-Legierungen auf Aluminiumbasis

  Anfrage/Kontaktieren Sie mich

Oerlikon, Linde und TU München forschen gemeinsam, um leichtere Komponenten für die Luft- und Raumfahrt- sowie die Automobilindustrie zu fertigen

Additive Fertigung für hochfeste Leichtmetall-Legierungen auf Aluminiumbasis
Additive Fertigung für hochfeste Leichtmetall-Legierungen auf Aluminiumbasis

Der Technologie-Konzern Oerlikon ist mit dem Industriegasehersteller Linde und der Technischen Universität München (TUM) eine Forschungsallianz für additive Fertigung (AM) eingegangen. Die Partner wollen neue hochfeste Leichtmetall-Legierungen auf Aluminiumbasis entwickeln, um die hohe Nachfrage der Luft- und Raumfahrt- sowie Automobilindustrie nach Sicherheit und Gewichtsreduzierung zu erfüllen. Das Forschungsprojekt mit einem Volumen von 1,7 Millionen Euro wird zu 50 % vom bayerischen Wirtschaftsministerium finanziert. Die Forschungskooperation entstand in direktem Zusammenhang mit einem im Oktober angekündigten AM-Gemeinschaftsprojekt: Damals gaben TUM, Oerlikon, GE Additive und Linde die Errichtung eines bayerischen AM-Clusters und eines Instituts für additive Fertigung bekannt, um die Zusammenarbeit und fachübergreifende Forschung zwischen den drei Unternehmen und der Universität zu fördern. Durch die Bündelung komplementärer Kernkompetenzen an einem Standort soll die Industrialisierung der additiven Fertigung beschleunigt werden.

Kombination der Expertise aller Partner

Oerlikons Expertise im Bereich von Pulvern und Werkstoffen wird maßgeblich zur Entwicklung des neuartigen Werkstoffes beitragen. „Dank unserer in-house Software Scoperta-RAD können wir durch umfangreiche Big-Data-Simulationen und -Analysen hochrelevante Lösungen für die Entwicklung innovativer Werkstoffe bieten oder das Leistungsspektrum bereits verfügbarerer Werkstoffe optimieren“, so Dr. Alper Evirgen, Metallurge bei Oerlikon AM. „Die Verarbeitung von Aluminiumlegierungen mittels additiver Fertigung birgt einige Herausforderungen. Die durch die hohen Temperaturen hervorgerufenen extremen Bedingungen im Schmelzbad können dazu führen, dass leichtsiedende Legierungsbestandteile wie Magnesium einfach verdampfen“, erläutert Dr. Marcus Giglmaier, Project Manager AM Institute. „Außerdem werden während des Erstarrungsvorgangs Abkühlraten von mehr als 1 Mio. Grad Celsius pro Sekunde erreicht wodurch extrem hohe Spannungszustände im Material erzeugt werden und sogenannte Mikro-Risse entstehen können.“

Das herausragende Know-how und die bahnbrechenden Technologien von Linde in Bezug auf die Kontrolle der Gasatmosphäre während des AM-Prozesses hilft bei der Vermeidung von Verunreinigungen im Druckprozess und eröffnet den Anwendern die Möglichkeit, optimale Druckbedingungen zu erzielen. „Die Charakterisierung und Kontrolle des Gasprozesses während der additiven Fertigung birgt nicht nur das Potenzial, Verdampfungsverluste zu verhindern, sondern kann auch den gesamten Druckprozess beschleunigen“, erklärt Thomas Ammann, Expert Additive Manufacturing bei Linde. „Die Verwendung von maßgeschneiderten Gasgemischen für die neue Legierung werden dabei helfen, die im Schmelzbad auftretenden Prozesse zu kontrollieren, die Änderungen in der Zusammensetzung der Legierungen zu minimieren und Rissbildung während des Druckprozesses zu verhindern.“

Das Institut für Aerodynamik und Strömungstechnik (AER) an der Technischen Universität München verfügt durch den Einsatz numerischer Simulationen über ein detailliertes Verständnis zu den physikalischen Vorgängen, die während des Prozesses der additiven Fertigung auftreten. „Die AM-Forschungsallianz schließt die Lücke zwischen unseren neuesten numerischen Modellierungsergebnissen und künftigen Industrieanwendungen“, sagt Prof. Nikolaus Adams, Lehrstuhlleiter für Aerodynamik und Strömungstechnik. Im AER wurde ein Prozess-Simulationstool entwickelt, das die gesamte Schmelzbaddynamik abdeckt. Es umfasst Modelle für den Phasenwechsel zwischen fest-flüssig-gasförmig und beinhaltet Effekte wie Oberflächenspannung und Wärmetransport. „Ein detaillierter Einblick in alle gleichzeitig auftretenden thermofluiddynamischen Phänomene ist eine wesentliche Voraussetzung für ein besseres Verständnis des Gesamtprozesses und der resultierenden Materialeigenschaften“, fügt Dr. Stefan Adami hinzu
 

Veröffentlicht am November 21, 2019 - (173 views)
Verwandte Beiträge
Gebermodule, für die Robotik
Keller in Space
Unsere Lösungen, so individuell wie Sie
Lösungen für Bedienung & Steuerung
Hochleistungssicherung für Automotive Anwendungen
Unsere Lösungen, so individuell wie Sie.
Temperatursensoren, auf Lager zum sofortigen, weltweiten Versand
Gebermodule, für die Robotik
Deutschlands schnellste Gasfeder - In 24 h ausgelegt, befüllt und geliefert!
Mechanische Komponenten aus einer Hand
Baukasten für die Echtzeitbildverarbeitung
Induktiver Sensor für Hydraulikanwendungen
IoT Raumklima Logger
Haydon und Mobidiag im Kampf gegen das COVID-19-Virus
Mixed-Signal-Oszilloskop
EtherCAT Energiemanagement Lösung
3-Phasen-Einbaufilter mit Neutralleiter
Wiederanschließbare IEC-Gerätesteckdose
Sensata bringt neues rauscharmes Halbleiterrelais auf den Markt
UniStream PLC: Wiederstandsfähige SPS-Hardware mit virtuellem HMI
Give a Breath-Challenge zeichnet Projekt auf Basis von Festo App aus
Vorausschauende Wartung
fürs Kabel
Digitalmanometer für moderne Instandhaltungskonzepte
UniStream, die ausgezeichnete Serie programmierbarer Steuerungen mit integriertem HMI von Unitronics
Unitronics‘ AC-Servoantriebe und -motoren
Dreimal schnellere Kabelkennzeichnung mit BradyPrinter A5500
Profilsensor mit weitem Sichtfeld und hoher Auflösung
Aus Kunststoff wird wieder Erdöl
3-phasige Stromversorgung mit breitem Einsatzspektrum
Der neue M12 mit Push-Pull Innenverriegelung