Additive Fertigung für hochfeste Leichtmetall-Legierungen auf Aluminiumbasis

  Anfrage/Kontaktieren Sie mich

Oerlikon, Linde und TU München forschen gemeinsam, um leichtere Komponenten für die Luft- und Raumfahrt- sowie die Automobilindustrie zu fertigen

Additive Fertigung für hochfeste Leichtmetall-Legierungen auf Aluminiumbasis
Additive Fertigung für hochfeste Leichtmetall-Legierungen auf Aluminiumbasis

Der Technologie-Konzern Oerlikon ist mit dem Industriegasehersteller Linde und der Technischen Universität München (TUM) eine Forschungsallianz für additive Fertigung (AM) eingegangen. Die Partner wollen neue hochfeste Leichtmetall-Legierungen auf Aluminiumbasis entwickeln, um die hohe Nachfrage der Luft- und Raumfahrt- sowie Automobilindustrie nach Sicherheit und Gewichtsreduzierung zu erfüllen. Das Forschungsprojekt mit einem Volumen von 1,7 Millionen Euro wird zu 50 % vom bayerischen Wirtschaftsministerium finanziert. Die Forschungskooperation entstand in direktem Zusammenhang mit einem im Oktober angekündigten AM-Gemeinschaftsprojekt: Damals gaben TUM, Oerlikon, GE Additive und Linde die Errichtung eines bayerischen AM-Clusters und eines Instituts für additive Fertigung bekannt, um die Zusammenarbeit und fachübergreifende Forschung zwischen den drei Unternehmen und der Universität zu fördern. Durch die Bündelung komplementärer Kernkompetenzen an einem Standort soll die Industrialisierung der additiven Fertigung beschleunigt werden.

Kombination der Expertise aller Partner

Oerlikons Expertise im Bereich von Pulvern und Werkstoffen wird maßgeblich zur Entwicklung des neuartigen Werkstoffes beitragen. „Dank unserer in-house Software Scoperta-RAD können wir durch umfangreiche Big-Data-Simulationen und -Analysen hochrelevante Lösungen für die Entwicklung innovativer Werkstoffe bieten oder das Leistungsspektrum bereits verfügbarerer Werkstoffe optimieren“, so Dr. Alper Evirgen, Metallurge bei Oerlikon AM. „Die Verarbeitung von Aluminiumlegierungen mittels additiver Fertigung birgt einige Herausforderungen. Die durch die hohen Temperaturen hervorgerufenen extremen Bedingungen im Schmelzbad können dazu führen, dass leichtsiedende Legierungsbestandteile wie Magnesium einfach verdampfen“, erläutert Dr. Marcus Giglmaier, Project Manager AM Institute. „Außerdem werden während des Erstarrungsvorgangs Abkühlraten von mehr als 1 Mio. Grad Celsius pro Sekunde erreicht wodurch extrem hohe Spannungszustände im Material erzeugt werden und sogenannte Mikro-Risse entstehen können.“

Das herausragende Know-how und die bahnbrechenden Technologien von Linde in Bezug auf die Kontrolle der Gasatmosphäre während des AM-Prozesses hilft bei der Vermeidung von Verunreinigungen im Druckprozess und eröffnet den Anwendern die Möglichkeit, optimale Druckbedingungen zu erzielen. „Die Charakterisierung und Kontrolle des Gasprozesses während der additiven Fertigung birgt nicht nur das Potenzial, Verdampfungsverluste zu verhindern, sondern kann auch den gesamten Druckprozess beschleunigen“, erklärt Thomas Ammann, Expert Additive Manufacturing bei Linde. „Die Verwendung von maßgeschneiderten Gasgemischen für die neue Legierung werden dabei helfen, die im Schmelzbad auftretenden Prozesse zu kontrollieren, die Änderungen in der Zusammensetzung der Legierungen zu minimieren und Rissbildung während des Druckprozesses zu verhindern.“

Das Institut für Aerodynamik und Strömungstechnik (AER) an der Technischen Universität München verfügt durch den Einsatz numerischer Simulationen über ein detailliertes Verständnis zu den physikalischen Vorgängen, die während des Prozesses der additiven Fertigung auftreten. „Die AM-Forschungsallianz schließt die Lücke zwischen unseren neuesten numerischen Modellierungsergebnissen und künftigen Industrieanwendungen“, sagt Prof. Nikolaus Adams, Lehrstuhlleiter für Aerodynamik und Strömungstechnik. Im AER wurde ein Prozess-Simulationstool entwickelt, das die gesamte Schmelzbaddynamik abdeckt. Es umfasst Modelle für den Phasenwechsel zwischen fest-flüssig-gasförmig und beinhaltet Effekte wie Oberflächenspannung und Wärmetransport. „Ein detaillierter Einblick in alle gleichzeitig auftretenden thermofluiddynamischen Phänomene ist eine wesentliche Voraussetzung für ein besseres Verständnis des Gesamtprozesses und der resultierenden Materialeigenschaften“, fügt Dr. Stefan Adami hinzu
 

Veröffentlicht am November 21, 2019 - (182 views)
Verwandte Beiträge
Koppler für drahtlose Verbindungen
Von der Reparaturwerkstatt zum Automatisierungsspezialisten
Battery Ventures übernimmt imc Test & Measurement
Kooperationserklärung im Bereich industrielles 5G
Condition Monitoring Sensor mit IO-Link
Vielseitige RJ45-Verbinder in Metall
Miniatur Motion Controller
Wi-Fi 6 im industriellen Einsatz
Serie TSR 1.5E
Mikrosensor für Elektromotoren
Magnetfeldsensoren und Funktionale Sicherheitssysteme
JUMO variTRON 500 Zentraleinheit für Automatisierungssystem
JUMO digiLine O-DO S10, Digitaler optischer Sensor für Gelöst-Sauerstoff in wässrigen Lösungen
JUMO Ex-i Trennschaltverstärker, 2-Kanal-Trennschaltverstärker für Ex-Anwendungen
JUMO dTRANS T06 Ex Multifunktions-Vierdrahtmessumformer im Tragschienengehäuse mit SIL- und Ex-Zulassung
JUMO NESOS R40 LSH Schwimmerschalter in horizontaler Ausführung
Lösungen für Bedienung & Steuerung
SPSconnect - Automation Goes Digital - digitaler Branchentreff der Automatisierungsindustrie vom 24. bis 26. 11. 2020
Temperaturempfindliche SMD-Sicherung USN 1206
SPSConnect - Automation Goes Digital
Condition Monitoring Sensor mit IO-Link
Temperaturmesslösungen für die Lebensmittelindustrie
ThermoView TV40 - Thermokamera - Wärmebildsystem
Infrarot-Pyrometer für die Temperaturmessung in der Metallurgie
Temperaturprofilsysteme
Infrarot-Temperaturlösungen
UMT-W Fail Safe Device
Portescap stellt Motor für Hochgeschwindigkeitsanwendungen vor
Amphenol ICC's ix Industrial™ IP20 Steckverbinder
Intelligente Antriebsregler mit EtherCAT & Safety
igus investiert in innovative Kunststoff-Recycling-Technologie
Temperaturmesslösungen für die Lebensmittelindustrie
ThermoView TV40 - Thermokamera - Wärmebildsystem
Infrarot-Pyrometer für die Temperaturmessung in der Metallurgie
Temperaturprofilsysteme
Infrarot-Temperaturlösungen
M12 Push-Pull von Yamaichi internationaler Standard
Thermischer Schutz
Roboterarm mit Spritzwasserschutz
Servo-Serie mit Safe-Motion-Funktion