Hart im Nehmen: Sensorsysteme für extrem raue Umgebungen

Bislang fehlt es der Industrie an robusten Sensoren, die extrem hohe Temperaturen und Drücke aushalten. Im Leitprojekt »eHarsh« haben acht Fraunhofer-Institute jetzt eine Technologieplattform für den Bau solcher Sensorsysteme entwickelt. Diese können sogar das Innere von Turbinen und tiefen Bohrlöchern für die Geothermie überwachen.

  • Dezember 2, 2021
  • 240 views
  • Keramische Leiterplatte mit Hochtemperatur-fähigen integrierten Schaltungen. © Fraunhofer IZM
    Keramische Leiterplatte mit Hochtemperatur-fähigen integrierten Schaltungen. © Fraunhofer IZM
  • Kopf des Sensors mit keramischem Sensorelement. © Fraunhofer ILT
    Kopf des Sensors mit keramischem Sensorelement. © Fraunhofer ILT

Sie nehmen stö­ren­de Vi­bra­tio­nen wahr, war­nen, wenn ei­ne Ma­schi­ne heiß läuft, und kön­nen schad­haf­te Bau­tei­le auf ei­nem Fließ­band er­ken­nen. Sen­so­ren spie­len heu­te in der Pro­duk­tion ei­ne Schlüs­sel­rol­le. Gan­ze Fer­ti­gungs­li­nien wer­den mit­hil­fe der zu­ver­läs­si­gen Füh­ler und künst­li­chen Au­gen ge­steu­ert. In man­chen In­dus­trie­be­rei­chen aber konnten sich die wach­sa­men Hel­fer bis­lang nicht durch­set­zen – in so­ge­nann­ten ex­trem rauen Um­ge­bun­gen, in de­nen her­kömm­liche Sen­so­ren bin­nen kur­zer Zeit zer­stört wer­den. Da­zu zählt das In­ne­re von Kraft­werks- oder Flug­zeug­tur­bi­nen oder von Bohr­lö­chern im Erd­bo­den, in de­nen ho­he Tem­pe­ra­tu­ren und Drü­cke herr­schen. Auch ag­gres­si­ve Gase und Flüs­sig­kei­ten oder Stäu­be set­zen Sen­so­ren zu. Im Pro­jekt eHarsh ha­ben sich des­halb acht Fraun­hofer-In­sti­tu­te zu­sam­men­ge­tan, um erst­mals be­son­ders ro­bus­te Sen­so­ren für ex­trem raue Um­ge­bun­gen (ex­treme harsh en­vi­ron­ments) zu ent­wi­ckeln. "In den ver­schie­de­nen In­sti­tu­ten ver­fü­gen wir über viele De­tail­kennt­nisse", sagt eHarsh-Ko­or­di­na­tor Holger Kappert vom Fraun­hofer-In­sti­tut für Mikro­elek­tro­ni­sche Schal­tun­gen und Sys­teme IMS. "Wir ken­nen uns mit hitze­be­stän­di­gen Ke­ra­mi­ken aus, kön­nen Ma­te­ri­al­ei­gen­schaf­ten prü­fen und ro­bus­te mik­ro­elek­tro­ni­sche Schal­tun­gen an­fer­ti­gen. Doch allein war kei­ner von uns in der La­ge, ei­nen sol­chen Sen­sor her­zu­stel­len. Erst durch das Zu­sam­men­spiel und die Kom­bi­na­tion vie­ler ein­zel­ner Tech­no­lo­gien ist uns das jetzt ge­lun­gen."

Signalverarbeitung direkt vor Ort

Das Team setzte den Schwer­punkt zu­nä­chst auf An­wen­dun­gen mit ho­hen Tem­pe­ra­tu­ren und Drü­cken – be­sag­te Tur­bi­nen und Bohr­lö­cher. Das Ziel war es, nicht nur ro­bus­te Druck- und Ther­mo­ele­men­te in die Tur­bi­nen und Bohr­lö­cher zu brin­gen, son­dern auch die Elek­tro­nik zum Aus­wer­ten der Mess­wer­te. "Der Vor­teil einer Elek­tro­nik vor Ort und der Sig­nal­ver­ar­bei­tung im Sen­sor liegt in ei­ner hö­he­ren Qua­li­tät der Sen­sor­sig­na­le", sagt Hol­ger Kap­pert. "Au­ßer­dem kön­nte man Sen­so­ren da­mit künf­tig bes­ser ver­net­zen und auf­wän­di­ge Ver­ka­be­lung ein­spa­ren." Das wä­re vor al­lem in Flug­zeug­trieb­wer­ken in­te­res­sant, weil sich da­durch das Ge­wicht re­du­zie­ren lie­ße. Sol­che Trieb­wer­ke sind kom­plex. Luft­strö­me, elek­tri­sche Span­nun­gen und Leis­tun­gen müs­sen je nach Flug­ma­nö­ver genau ge­re­gelt wer­den. Mit­hil­fe klei­ner ro­bus­ter Sen­so­ren di­rekt im An­trieb kön­nte die Mes­sung des Trieb­werks­zu­stands und die Steue­rung des Ver­bren­nungs­pro­zes­ses künf­tig noch prä­zi­ser wer­den – etwa um Treib­stoff ef­fi­zien­ter zu nut­zen

Das Sen­sor­ge­häu­se be­steht aus Me­tall, die Sen­sor­ele­men­te be­ste­hen aus Ke­ra­mik, die Tem­pe­ra­tu­ren von bis zu 500 Grad Cel­sius wider­steht. Das elek­tro­ni­sche In­nen­le­ben hält rund 300 Grad Cel­sius aus. Eine He­raus­for­de­rung be­stand darin, die ver­schie­de­nen Kom­po­nen­ten so mit­ein­an­der zu ver­bin­den, dass sie sich auch bei wie­der­hol­tem Er­hit­zen und Ab­küh­len nicht von­ein­an­der lö­sen, wenn sich die Ma­te­rial­ien un­te­rschied­lich stark aus­deh­nen und zu­sam­men­zie­hen. Zum Ein­satz kom­men un­ter an­de­rem Lei­ter­plat­ten aus hit­ze­be­stän­di­ger Ke­ra­mik und Lei­ter­bah­nen mit ei­ner Bei­mi­schung von Wolf­ram, das auch für die Wen­deln von Glüh­bir­nen ver­wen­det wird.

Sensor für die Geothermie

Doch die Sen­so­ren sind nicht nur hit­ze­be­stän­dig, son­dern er­tra­gen auch ho­he Drü­cke von bis zu 200 Bar – fast ein­hun­dert­mal mehr als im Au­to­rei­fen. Da­mit kön­nen der­ar­ti­ge Sen­so­ren künf­tig un­ter an­de­rem in Pum­pen für die Geo­ther­mie ein­ge­set­zt wer­den. Bei der Geo­ther­mie wer­den Ge­bäu­de mit hei­ßem Was­ser aus dem Erd­bo­den be­heizt. Die Pum­pen sit­zen tief un­ten im Bohr­loch und müs­sen so­wohl die Hit­ze als auch die Drü­cke aus­hal­ten kön­nen. Dank der neu­en Sen­so­ren ist jetzt ei­ne ein­fa­che, per­ma­nen­te Über­wa­chung mög­lich. Ma­schi­nen­her­stel­lern hel­fen die er­wei­ter­ten Mög­lich­kei­ten aber auch beim Tes­ten der Le­bens­dauer ih­rer Sen­so­ren. Bei sol­chen Tests wer­den Bau­tei­le hö­he­ren Drü­cken oder Tem­pe­ra­tu­ren aus­ge­setzt, da­mit sie schnel­ler al­tern. So läs­st sich in über­schau­ba­rer Zeit die Lebens­dauer ei­nes Pro­dukts be­stim­men. Hal­ten Sen­so­ren ex­tre­me­re Be­din­gun­gen aus, kön­nen die Tests bei hö­he­ren Wer­ten ge­fah­ren wer­den. Da­durch ver­kürzt sich die Test­dauer deut­lich. "Ins­ge­samt ist es uns dank der In­ter­dis­zi­pli­na­ri­tät in "eHarsh" ge­lun­gen, eine Tech­no­lo­gie­platt­form für ro­bus­te Sen­sor­sys­teme für vie­le ver­schie­de­ne An­wen­dun­gen zu ent­wi­ckeln", re­sü­miert Holger Kappert.

Am Projekt eHarsh sind die folgenden Fraun­hofer-In­sti­tute be­tei­ligt:

  • Fraunhofer-Institut für Kurzzeitdynamik, Ernst-Mach-Institut, EMI
  • Fraunhofer-Institut für Elektronische Nanosysteme ENAS
  • Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
  • Fraunhofer-Institut für Lasertechnik ILT
  • Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS
  • Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS
  • Fraunhofer-Institut für Physikalische Messtechnik IPM
  • Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

Weitere Informationen zum Projekt sind hier zu finden.

Haftungsausschluss: Die von TIM Global Media veröffentlichten Inhalte, einschließlich Texte, Bilder und Videos, werden entweder intern erstellt oder mit Zustimmung der Lieferanten bzw. Hersteller bereitgestellt. Die Lieferanten bzw. Hersteller gewährleisten, dass ihre Materialien keine Rechte Dritter verletzen, und erklären sich bereit, TIM Global Media von allen damit verbundenen Ansprüchen freizustellen.

Teilen mit: