Mikrostrukturen schnell und hochgenau drucken

  Anfrage/Kontaktieren Sie mich

Wissenschaftlerinnen und Wissenschaftler des KIT entwickeln neues 3D-Drucksystem für submikrometergenaue Strukturen in Rekordgeschwindigkeit

Das Metamaterial, das mit dem neuen System gedruckt wurde, besteht aus einer kom-plexen dreidimensionalen Gitterstruktur im Mikrometermaßstab. (Foto: Vincent Hahn, KIT)
Das Metamaterial, das mit dem neuen System gedruckt wurde, besteht aus einer kom-plexen dreidimensionalen Gitterstruktur im Mikrometermaßstab. (Foto: Vincent Hahn, KIT)

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. 

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter große Gitterstruktur mit Details bis in den Mikrometermaßstab gedruckt, die mehr als 300 Milliarden Voxel enthält. (Ein Voxel ist das dreidimensionale Analogon des Pixels im 2D-Druck). „Mit dem Druck dieses Metamaterials schlagen wir den Rekord, der bei 3D-gedruckten Flugzeugflügeln erreicht wurde, um Längen – ein neuer Weltrekord“, erklärt Professor Martin Wegener, Sprecher des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O), in dessen Rahmen das System entwickelt wurde.

Druck mit Gewschwindigkeit von zehn Millionen Voxel pro Sekunde

Bei dieser Art von 3D-Druck durchfährt der Lichtfleck eines Lasers computergesteuert einen flüssigen Fotolack. Nur das Material im Brennpunkt des Lasers wird dabei belichtet und ausgehärtet. „Die Brennpunkte entsprechen den Düsen beim Tintenstrahldrucker, mit dem Unterschied, dass sie dreidimensional arbeiten“, sagt Vincent Hahn, Erstautor der Publikation. So entstehen hochpräzise filigrane Strukturen für verschiedene Einsatzbereiche wie Optik und Photonik, Materialwissenschaften, Biotechnologie oder Sicherheitstechnik. Typischerweise konnte man bisher mit einem einzigen Laserlichtfleck einige Hundert Tausend Voxel pro Sekunde erzeugen. Er war damit fast hundertmal langsamer als grafische Tintenstrahldrucker. Dieser Umstand hat bislang viele Anwendungen behindert. Wissenschaftlerinnen und Wissenschaftler des KIT und der Queensland University of Technology (QUT) in Brisbane/Australien haben nun innerhalb des Exzellenzclusters 3DMM2O ein neues System entwickelt. Mit einer speziellen Optik wird der Laserstrahl in neun Teilstrahlen aufgeteilt, die jeweils in einen Brennpunkt gebündelt werden. Alle neun Teilstrahlen können parallel verwendet und inzwischen, dank verbesserter elektronischer Ansteuerung, auch deutlich schneller als zuvor präzise verfahren werden. Mit einigen weiteren technischen Verbesserungen kommen die Forscher im 3D-Druck so auf Druckgeschwindigkeiten von etwa zehn Millionen Voxel pro Sekunde und sind damit nun gleichauf mit grafischen 2D-Tintenstrahldruckern. Dennoch geht die Forschung und Entwicklung am KIT mit Hochdruck weiter. „Schließlich will man mit 3D-Druckern nicht nur das Pendant eines Blattes, sondern dicke Bücher ausdrucken“, so Hahn. Hierzu seien insbesondere auch Fortschritte in der Chemie erforderlich, beispiels-weise müssten empfindlichere Fotolacke entwickelt werden, um mit der gleichen Laserleistung noch mehr Brennpunkte erzeugen zu können.
 

Veröffentlicht am Januar 28, 2020 - (169 views)
Verwandte Beiträge
Leuze electronic AG Schweiz feiert 40. Geburtstag
Ein Laser für alle Fälle
Klein, stark und schwarz
Ordnung auf engstem Raum
Schleifringe für den richtigen Dreh am Füllerkarussell
Planbare Stillstandzeiten tragen zu Kosteneinsparungen bei
Damit der Roboter durchhält
Kabellose Lösungen für missionskritische Herausforderungen in Industrieanwendungen
Smart Condition Monitoring-Lösung mit IIoT-Sensoren
7-Zoll-Widescreen-Mulitouchpanel
400 VDC-Stecksystem nach IEC
Magnetfeldsensoren und Funktionale Sicherheitssysteme
JUMO variTRON 500 Zentraleinheit für Automatisierungssystem
JUMO digiLine O-DO S10, Digitaler optischer Sensor für Gelöst-Sauerstoff in wässrigen Lösungen
JUMO Ex-i Trennschaltverstärker, 2-Kanal-Trennschaltverstärker für Ex-Anwendungen
JUMO dTRANS T06 Ex Multifunktions-Vierdrahtmessumformer im Tragschienengehäuse mit SIL- und Ex-Zulassung
JUMO NESOS R40 LSH Schwimmerschalter in horizontaler Ausführung
Lösungen für Bedienung & Steuerung
SPSconnect - Automation Goes Digital - digitaler Branchentreff der Automatisierungsindustrie vom 24. bis 26. 11. 2020
Temperaturempfindliche SMD-Sicherung USN 1206
Taupunktspiegelhygrometer als zuverlässige Referenz im Kalibrierlabor
Condition Monitoring Sensor mit IO-Link
Temperaturmesslösungen für die Lebensmittelindustrie
ThermoView TV40 - Thermokamera - Wärmebildsystem
Infrarot-Pyrometer für die Temperaturmessung in der Metallurgie
Temperaturprofilsysteme
Infrarot-Temperaturlösungen
UMT-W Fail Safe Device
Portescap stellt Motor für Hochgeschwindigkeitsanwendungen vor
Amphenol ICC's ix Industrial™ IP20 Steckverbinder
ACE Industriegasfedern halten Parkbank trocken
igus investiert in innovative Kunststoff-Recycling-Technologie
Temperaturmesslösungen für die Lebensmittelindustrie
ThermoView TV40 - Thermokamera - Wärmebildsystem
Infrarot-Pyrometer für die Temperaturmessung in der Metallurgie
Temperaturprofilsysteme
Infrarot-Temperaturlösungen
M12 Push-Pull von Yamaichi internationaler Standard
Thermischer Schutz
Roboterarm mit Spritzwasserschutz